Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE-90

Academic Year 2019-20

Program:	B E – CIVIL ENGINEERING
Semester :	4
Course Code:	18CV44
Course Title:	Concrete Technology
Credit / L-T-P:	3 / 3-0-0
Total Contact Hours:	50
Course Plan Author:	Shivaprasad D G/ Renuka H R

Academic Evaluation and Monitoring Cell

#29 Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bangalore-560090 PH-080-23721477/23721315 www.Skit.org, Email: skitprinci1@gmail.com

Table of Contents

A. COURSE INFORMATION	3
1. Course Overview	3
2. Course Content	3
3. Course Material	4
4. Course Prerequisites	4
5. Content for Placement, Profession, HE and GATE	5
B. OBE PARAMETERS	5
1. Course Outcomes	5
2. Course Applications	6
3. Mapping And Justification	6
4. Articulation Matrix	7
5. Curricular Gap and Content	8
6. Content Beyond Syllabus	8
C. COURSE ASSESSMENT	8
1. Course Coverage	8
2. Continuous Internal Assessment (CIA)	8
D1. TEACHING PLAN - 1	9
Module - 1	9
Module – 2	10
E1. CIA EXAM – 1	11
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	12
Module – 3	
Module – 4	13
E2. CIA EXAM – 2	14
a. Model Question Paper - 2	14
b. Assignment – 2	14
D3. TEACHING PLAN - 3	15
Module – 5	15
E3. CIA EXAM – 3	16
a. Model Question Paper - 3	
b. Assignment – 3	17
F. EXAM PREPARATION	18
1. University Model Question Paper	
2. SEE Important Questions	

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	CIVIL ENGINEERING
Semester:	4	Academic Year:	2019-20
Course Title:	Concrete technology	Course Code:	18CV44
Credit / L-T-P:	3 / 3-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	1 / Module
Course Plan Author:	Shivaprasad D G/ Renuka H R	Sign	
Checked By:	Mohan KT	Sign	
CIA Traget	75	SEE Target:	62

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachi	Identified Module	Blooms
ule		ng	Concepts	Learning
		Hours		Levels
1	Concrete Ingredients Cement – Cement manufacturing process, steps to reduce	10	material characteristics	L2
	carbon footprint, chemical composition and their importance,			
	hydration of cement, types of cement. Testing of cement.			
	Fine aggregate: Functions, requirement, Alternatives to River sand, M-sand introduction and manufacturing. Coarse			
	aggregate: Importance of size, shape and texture. Grading			
	requirement.			
	Recycled aggregates Water – qualities of water. Chemical			
	entraining agents. Mineral admixtures – Pozzolanic and			
	cementitious materials, Fly ash, GGBS, silica fumes,			
	Metakaolin and rice husk ash.	10		
2	Fresh Concrete	10	workability and	L2
	workability-factors arecting workability. Measurement of workability-slump. Compaction factor and Vee-Bee		cunng.	
	Consistometer tests, flow tests. Segregation and bleeding.			
	Process of manufacturing of concrete- Batching, Mixing,			
	Transporting, Placing and Compaction.			
	curing - Methods of curing - water curing, membrane curing, steam curing, accelerated curing, self- curing, Good			
	and Bad practices of making and using fresh concrete and			
	Effect of heat of hydration during mass concreting at project			
	SITES. Hardonad Concrato: Eactors influencing strength \V//C ratio	10	proportion of	
3	allypace ratio. Maturity concept. Testing of hardened	10	hardened	Lკ
	concrete, Creep –factors affecting creep. Shrinkage of		Concrete.	
	concrete – plastic shrinking and drying shrinkage, Factors			
	affecting shrinkage. Definition and significance of durability.			
	Mechanisms- Sulphate attack – chloride attack, carbonation.			
	freezing and thawing. Corrosion, Durability requirements as			
	per IS-456,			
	Insitu testing of concrete- Penetration and pull out test,			
	extraction – Principal, applications and limitations.			
L			1	

4	Concrete Mix Proportioning Concept of Mix Design with and without admixtures, variables in proportioning and Exposure conditions, Selection criteria of ingredients used for mix design, Procedure of mix proportioning. Numerical Examples of Mix Proportioning using IS-10262	10	Concrete mix design.	L5
5	Special Concretes RMC- manufacture and requirement as per QCI-RMCPCS, properties, advantages and disadvantages. Self-Compacting concrete- concept, materials, tests, properties, application and typical mix Fiber reinforced concrete - Fibers types, properties, application of FRC. Light weight concrete-material properties and types. Typical light weight concrete mix and aplications	10	Properties of Special concrete	L5,
-	Total	50	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 - 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Modul	Details	Chapters	Availability
es		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1,2,3,4,	Neville A.M. "Properties of Concrete"-4th Ed., Long man.	1,2,3,4,5	In Lib / In Dept
5			
1,2,3,4,	M.S. Shetty, Concrete Technology - Theory and Practice Published by S.	1,2,3,4,5	In Lib⁄ In dept
5	Chandand Company, New Delhi.		
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
С	Concept Videos or Simulation for Understanding	-	-
C1	<u> https://www.youtube.com/watch?v=</u> concretematerilas – 15 Mins		
	https://www.youtube.com/watch?concreteproperities-5 Mins		
C2	https://www.youtube.com/watch?Civilax.com		
C3	https://www.youtube.com/watch?Theconstructor.org		
C4	https://www.youtube.com/watch?Onlinecivil.net		
C5	https://www.youtube.com/watch?Www.civildigitial.com		
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5. . ~

Student	tudents must have learnt the following Courses / Topics with described Content							
Module	Course	Course Name	Topic / Description	Sem	Remarks	Blooms		
S	Code					Level		

/ Tanias with described Content

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
1				
3				
3				
5				
-				
-				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessm	Blooms'
ules	Code.#	At the end of the course, student	Hours		Metho	ent	Level
		should be able to			d	Method	
1	18CV44.1	Students will be able to understand	05	material	Lecture	Slip Test	Understand
		the testing of different ingredients		characteristic			L2
		of concrete- cement, aggregates		S			
		as per IS code.					
1	18CV44.2	Students will be able to decide the	05	material	Lecture	Assignm	Analyze
		type of admixtures to be used for		characteristic	/	ent	L4
		concreting based on its properties		S	Tutorial		
2	18CV44.3	Students will be able to determine	05	Workability	Lecture	Assignm	Apply
		the properties of fresh concrete				ent	L3
2	18CV44.4	Students will be able to understand	05	curing	Lecture	Slip Test	Understand
		curing methods and its problems.					L2
3	18CV44.5	Students will be able to determine	05	properties of	Lecture	Slip test	Apply
		the properties of hardened		hardened			L3
		concrete.		Concrete.			
3	18CV44.6	Students will be able to determine	05	Non	Lecture	Assignm	Apply
		different properties of concrete by		destructive	/Tutori	ent	L3
		applying non-destructive testing of		testing	al		
		concrete and also explain the					
		factors affecting durability of					
		concrete		<u>O</u>	1	A	
4	18CV44./	Students will be able to design the	10	Concrete mix	Lecture	Assignm	L3
		concrete mix using is code		design.	/ Iutori	ent	
_	400\/440	Methods Ctudents will be able to	05	Dranautica of	dl		Analyza
5	180.044.8	Students will be able to	05	Properties of	Lecture	Assignm	Anatyze
		depending on their specific		special		ent	L4
		applications and special processos		concrete	al		
		applications and special processes					
		of structure					
E	180\/440	Students will be able to understand	05	PMC	Locturo	Accianm	Understand
5	100 144.9	manufacturing of concrete	05		Leciule	ent	
-	-	Total	10	-	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Used for manufacturing of cement and its process.	CO1	L2
1	Used for accelerating the properties of concrete.	CO2	L3
2	Used for study of experiments to be done for fresh concrete.	CO3	L3
2	Used for studying the curing of concrete.	CO4	L2
3	Used for study of experiments to be done for hardened concrete.	CO5	L3
3	Used for studying the non destructive testing methods,	CO6	L3
4	Used for mix design for various grades of concrete.	CO7	L5
5	Used for application of marine structures, and valuable structures.	CO8	L5

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mod ules	Mapping Mapping		Mapping	Justification for each CO-PO pair	Lev
-	со	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	L2	Knowledge of the behavior of ingredients of concrete is essential to determine the properties of concrete by applying the knowledge of mathematics, science, engineering fundamentals.	L2
1	CO2	PO1	L2	Knowledge of the behavior of concrete while adding admixture concrete .by applying the knowledge of mathematics, scie engineering fundamentals	
1	CO2	PO3	L2	Selection of suitable type of admixtures in concreting is done based on its properties and it results in a concrete which satisfies the specified needs like strength, workability, economy etc. with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	L3
2	CO3	PO1	L5	Knowledge of the behavior of ingredients of fresh concrete is essential to determine the properties of fresh concrete by applying the knowledge of mathematics, science, engineering fundamentals	L2
2	CO3	PO3	L5	Proportioning of the ingredients of concrete should be designed in such a way that the concrete produced is economical and is of required strength, durability and workability which meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	L2
3	CO4	PO2	L5	Knowledge of the behavior of concrete while curing the fresh concrete by applying the knowledge of mathematics, science, engineering fundamentals	Ĺ
3	CO4	PO4	L5	Determination of properties of fresh and hardened concrete involves the use of research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to know the behavior of concrete.	L3
	COF			Knowledge of the behavior of ingredients of bardened constants is	
3	05	PUI	L5	essential to determine the properties of hardened concrete by applying the knowledge of mathematics, science, engineering fundamentals	
3	CO5	PO4	L5	Investigation of complex problems Use research-based knowledge and research methods including for hardened concrete.	L2
2	C06	P∩1	15	Knowledge of the behavior of determining the strength of concrete by	12
3	000	101	_ ∟ ⊃	priorition and the behavior of determining the strength of concrete by	LC

				applying the knowledge of mathematics, science, engineering fundamentals	
3	CO6	PO4	L5	Non-destructive testing of concrete involves carrying out of investigations using research based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to determine the compression strength of an existing building, corrosion of reinforcement etc. and to take corrective measures.	L2
4	CO7	PO1	L5	Knowledge of mathematics, science, engineering fundamentals required for the mix design procedure of concrete.	L2
4	CO7	PO3	L5	Design of different grades of concrete is to be done by applying the knowledge and referring is codes.	L2
5	CO8	PO1	L5	Knowledge of mathematics, science, engineering fundamentals are required to study the properties of special concrete.	L2
5	CO8	PO7	L5	Special concretes and special concreting methods to be adopted depending on their specific applications such that the resulting concrete satisfies the need of a sustainable environment.	L2

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes		Program Outcomes						-								
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1	18CV44.1	Students will be able to	3	-	-	-	-	-	-	-	-	-	-	-	L2			L2
		understand the testing of																
		different ingredients of concrete-																
		cement, aggregates as per IS																
	1001/11/0	COOR.	-		-													
1	18CV44.2	Students will be able to decide	3	-	3	-	-	-	-	-	-	-	-	-	L3			L2
		used for concreting based on its																
		properties																
2	18CV44.3	Students will be able to	З	-	_	3	-	-	-	-	-	-	-	-	L٦			L2
		determine the properties of fresh	5												_0			
		concrete																
2	18CV44.4	Students will be able to	3	-	-	3	-	-	-	-	-	-	-	-	L2			L3
		understand curing methods and																
		its problems.																
3	18CV44.5	Students will be able to	3	-	-	3	-	-	-	-	-	-	-	-	L3			L2
		determine the properties of																
	4001/446	nardened concrete.		<u> </u>		_												
3	100 44.0	determine different properties of	2	-	-	2	-	-	-	-	-	-	-	-	Ľ٤			L2
		concrete by applying non-																
		destructive testing of concrete																
		and also explain the factors																
		affecting durability of concrete																
4	18CV44.7	Students will be able to design	3	-	3	-	-	-	-	-	-	-	-	-	L5			L3
		the concrete mix using ACI and																
		IS code methods													-			
4	18CV44.8	Students will be able to	3	-	-	-	-	-	2	-	-	-	-	-	L5			L2
		recommend special concretes																
		applications and special																
		applications and special																
		particular types of structure																
		particular types of structure	1			1												

-	CS501PC	Average attainment (1, 2, or 3) 2 - 0.7 1.2 0.2
		5 5 5
-	PO, PSO	1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions
		4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and
		Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork,
		10.Communication; 11.Project Management and Finance; 12.Life-long Learning
		S1.Software Engineering; S2.Data Base Management; S3.Web Design

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1					
2					
3					
4					
5					

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teachi		No. o	f quest		CO	Levels		
ules		ng	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
		Hours					Asg			
1	Concrete Ingredients	10	2	-	-	1	1	2	CO1, CO2	L2
2	Fresh Concrete	10	2	-	-	1	1	2	CO3, CO4	L3
3	Hardened Concrete	10	-	2	-	1	1	2	CO5, CO6	L3
4	Concrete Mix Proportioning	10	-	2	-	1	1	2	CO7,	L5
5	Special Concretes	10	-	-	4	1	1	2	CO8,	l3,l5
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluatio	Weightage in Marks	CO	Levels	Evaluation
n				
CIA Exam	30	CO1, CO2,	L2, l3,L3,L2	CIA Exam – 1
- 1		CO3, CO4		
CIA Exam	30	CO5, CO6,	L3.L2,L3,L3	CIA Exam – 2
- 2				
CIA Exam	30	CO7, C08	L5, l5	CIA Exam – 3
- 3				

Assignm ent - 1	10	CO1, CO2, CO3, CO4	L2, L3,L3,L2	Assignment - 1
Assignm ent - 2	10	CO5, CO6,	L3.L2,L3,L3	Assignment - 2
Assignm ent - 3	10	CO7, CO8	L5, l5	Assignment - 3
Seminar - 1	-	-		Seminar - 1
Seminar - 2	-	-	-	Seminar - 2
Seminar - 3	-	-	-	Seminar - 3

D1. TEACHING PLAN - 1

Module - 1

Title:	Concrete ingrdients	Appr	08 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand the testing of different ingredients of concrete- cement, aggregates as per IS code.	CO1	L2
2	Decide the type of admixtures to be used for concreting based on its properties	CO2	L2
b	Course Schedule	-	_
Class No	Module Content Covered	CO	Level
1	Cement – Cement manufacturing process	CO1	12
2	steps to reduce carbon footprint, chemical composition and their importance, hydration of cement, types of cement	C01	L2
3	Testing of cement. Fine aggregate: Functions, requirement,	CO1	L2
4	Alternatives to River sand, M-sand introduction and manufacturing	CO1	L2
5	Coarse aggregate: Importance of size, shape and texture. Grading and blending of aggregate. Testing on aggregate, requirement.	CO1	L2
6	Recycled aggregates Water – qualities of water.	CO2	L2
7	Chemical admixtures – plasticizers, accelerators, retarders and air entraining agents.	CO2	L2
8	Mineral admixtures – Pozzolanic and cementitious materials,	CO2	L2
9	Fly ash, GGBS, silica fumes.	CO2	L3
10	Metakaolin and rice husk ash.	CO2	L3
	Application Areas	0	
1	Used for manufacturing of cement and its process	CO1	
2	Used for Mixing of admixture in mixing of concrete	CO2	12
d	Review Questions	-	-
1	What is the common classification of aggregates?	CO1	L2
2	What is Light weight aggregates?	CO1	 L2
3	Define Heavy weight aggregates.	CO1	L2
4	Mention the Classification of aggregate In accordance with size.	CO1	L2
6	Mention the Classification of aggregate In accordance with source	CO1	L2
7	What are the properties of Aggregate?	CO1	L2
8	Define Fineness modulus of aggregate	CO1	L3
9	List various types of cement.	CO1	L3

10	What is the chemical composition of cement?	CO1	L3
11	What are the various test which are to be done on aggregates?	CO2	L3
12	What is mean by controlled concrete?	CO2	L3
13	What is meant by hydration of cement?	CO2	L3
14	What are the two process of manufacturing of Cement?	CO2	L3
15	Classify the various concrete chemical based on their use.	CO2	L3
16	Describe the process of manufacture of cement by wet process.	CO2	L3
17	Describe the process of manufacture of cement by dry process.	CO2	L3
18	Explain in details the various specifications of concrete.	CO2	L3
19	Explain in detail of any three tests for aggregates.	CO2	L3
20	What are the end products of hydration? Explain.	CO2	L3
21	What are the different tests conducted on wet cement?	CO2	L3
е	Experiences	-	-
1			
2			
3			

Module – 2

Title:	Fresh concrete	Appr	08 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Determine the properties of fresh concrete	CO3	L2
2	Understand curing methods and its problems.	CO4	L3
b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
1	Work ability-factors affecting workability. Measurement of workability–slump,	CO3	L5
2	Compaction factor and Vee-Bee Consistometer tests.	CO3	L5
3	Flow tests. Segregation and bleeding.	CO3	L5
4	Process of manufacturing of concrete.	CO3	L5
5	Batching, Mixing, Transporting,	CO4	L5
6	Placing and Compaction.	CO4	L5
7	Curing – Methods of curing .	CO4	L5
8	Water curing, membrane curing, steam curing, accelerated curing, self-	CO4	L5
	curing.		
9	Good and Bad practices of making and using fresh concrete.		
10	Effect of heat of hydration during mass concreting at project sites.		
С	Application Areas	CO	Level
1	Used for study of experiments to be done for fresh concrete.	CO3	L2
2	Used for studying the curing of concrete.	_CO4	L2
d	Review Questions	_	_
1	Write short notes on a Accelerators, b. Retarders c. Plasticizes,	CO3	L2
2	What are the various factors which affect the work ability of concrete?	CO3	L2
3	What are the Causes of bleeding and segregation?	CO3	L2
4	What is batching of concrete?	CO4	L2
5	Explain in detail of any three tests for Fresh Concrete.	CO4	L2
6	List the different types of work ability aids.	CO4	L3
7	What are the various factors which affect the work ability of concrete?	CO4	L3
8	What are the various factors affecting the work ability of concrete- Explain.	CO4	L3

9	Explain the influence of bleeding and segregation on fresh concrete.	CO4	L3
10	Explain the different stages of manufacture of concrete.	CO4	L3
е	Experiences	-	-

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs (Code	18CV44 Sem: IV Marks: 40 Time: 75	minute	es	
Cou	rse:	Concrete technology			
-	-	Note: Answer any 1 questions from each module, each carry equal	СО	Level	Marks
		marks.			
		Module-1			
1	а	Write the chemical composition of cement, Write the flow chart for dry	CO1	L2	8
		nrocess?			
	b	Explain the importance of size shape and texture of aggregate?	CO1	L2	7
					,
		OR			
2	а	Explain the role of admixtures in concrete Technology?	CO1	L2	7
	b	Name any four types of cement . State the properties and specifications	CO1	L2	8
		of any two cement?			
3	а	Define work-ability, Explain the factors influencing workability of	CO2	L5	15
		concrete?			
	b	Write a note on segregation and Bleeding?			
		OR			
4	а	Why curing is needed to concrete? Explain curing method?	CO1	L2	8
	b	Why compaction is required to concrete? Explain compaction method by	CO1	L2	7
		vibration?			

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment QuestionsCrs Code:18CV44Sem:IVMarks:Course:Concrete TechnologyNote:Each student to answer 2-3 assignments. Each assignments.

Cours	se: Concret	elechnology			
Note:	Each student	to answer 2-3 assignments. Each assignment carries equal ma	rk.	-	
SNo	USN	Assignment Description	Marks	CO	Level
1		Write the chemical composition of cement, Write the flow	10	CO1,	L2
		chart for dry process?			
2		Explain the importance of size shape and texture of	f 10	CO1,	L2
		aggregate?			
3		What is the common classification of aggregates?	10	CO1,	L5
4		What is Light weight aggregates?	10	CO1,	L5
5		Define Heavy weight aggregates.	10	CO1,	L2
6		Mention the Classification of aggregate In accordance with	10	CO1,	L2
		size.			
7		Mention the Classification of aggregate In accordance with	10	CO1,	L2
		source			
8		What are the properties of Aggregate?	10	CO1,	L2
9		Define Fineness modulus of aggregate	10	CO1,	L5
10		List various types of cement.	10	CO1,	L5
11		Write short notes on a. Accelerators. b. Retarders c. Plasticizes	. 10	,CO2	L2
12		What are the various factors which affect the work ability c concrete?	f 10	CO2	L2

10

Time:

90 – 120 minutes

13	What are the Causes of bleeding and segregation?	10	CO2	L2
14	What is batching of concrete?	10	CO2	L2
15	Explain in detail of any three tests for Fresh Concrete.	10	CO2	L5
16	List the different types of work ability aids.	10	CO2	L5
17	What are the various factors which affect the work ability of concrete?	10	CO2	L2
18	What are the various factors affecting the work ability of concrete- Explain.	10	CO2	L2

D2. TEACHING PLAN - 2

Module - 3

Title:	Hardened concrete	Appr Time:	16 Hrs		
a	Course Outcomes	-	Blooms		
-	The student should be able to:	-	Level		
1	determine the properties of hardened concrete.	CO5	L2		
2	determine different properties of concrete by applying non-destructive testing	C06	L2		
	of concrete and also explain the factors affecting durability of concrete				
b	Course Schedule				
Class N	D Module Content Covered	СО	Level		
1	Factors influencing strength	CO5	L5		
2	W/C ratio, gel/space ratio, Maturity concept.	CO5	L5		
3	Testing of hardened concrete, Creep –facto rs affecting creep	CO5	L5		
4	Shrinkage of concrete – plastic shrinking and drying shrinkage, Factors	CO5	L5		
	affecting shrinkage.				
5	Definition and significance of durability. Internal and external factors	CO6	L5		
	influencing durability.				
6	Mechanisms- Sulphate attack – chloride attack, carbonation, freezing and	CO6	L5		
	thawing. Corrosion,				
7	Durability requirements as per IS-456, In situ testing of concrete	CO6	L5		
8	Penetration and pull out test, rebound hammer test.	CO6	L5		
9	ultrasonic pulse velocity.				
10	core extraction – Principal, applications and limitations.				
С	Application Areas	со	Level		
1	Used for study of experiments to be done for hardened concrete.	CO5	L2		
2	Used for studying the non destructive testing methods,	CO6	L2		
d	Review Questions	-	-		
1	How fly ash concrete gain strength in later age? Explain Mechanism.	CO5	L5		
2	Discuss the effects of adding fly ash, silica fume and ground granulated blast	CO5	L5		
	furnace				
	slag in concrete.		<u> </u>		
3	Explain in detail the composition, physical properties of the mineral admixture	CO6	L5		
	GGBS and discuss the benefits of using it in concrete.	000			
4	Discuss at length the composition, properties of the mineral admixture Fly Ash	006	L5		
	dilu write the benefits of using it in concrete				
	What is meant by proportioning of concrete?				
5	Write the Eactors Influencing Consistency	C06			
7	What are the Eactors affecting Strength of Hardoned concrete?	000			
/ 8	What are the principal properties of "good" concrete?	000			
	What are the factors influencing the selection of materials?	000			
10	Explain the method of finding flexural and split tensile strength of concrete	000			
11	With a neat graph, explain different modulus of elasticity of concrete	000			
· 11					

12	Define Shrinkage cracking	CO6	L2				
13	Define Plastic Shrinkage cracking	CO6	L2				
14	Define Tension cracking (
15	Define Creep.	CO6	L2				
е	Experiences	-	-				
1							
2							
3							
4							
5							

Module – 4

Title:	Concrete mix Proportioning.	Appr Time:	08 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Students will be able to design the concrete mix using ACI and IS code	CO7	L5
	methods		
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Concept of Mix Design with and without admixtures.	CO7	L5
2	variables in proportioning and Exposure conditions,	CO7	L5
3	Selection criteria of ingredients used for mix design,	CO7	L5
4	Procedure of mix proportioning.	CO7	L5
5	Numerical Examples using IS-10262.	CO8	L5
6	Numerical Examples using IS-10262.	CO8	L5
7	Numerical Examples using IS-10262.	CO8	L5
8	Numerical Examples using IS-10262.	CO8	L5
9	Numerical Examples using IS-10262.	CO8	L2
10	Numerical Examples using IS-10262.	CO8	L2
С	Application Areas	CO	Level
1	Used for mix design for various grades of concrete.	CO7	L5
d	Review Questions	-	-
1	Define Nominal Mixes	CO7	L5
2	Define Standard mixes	CO7	L5
3	What is Designed Mixes?	CO7	L5
4	What are the Factors affecting the choice of mix proportions?	CO7	L5
5	Explain the Design Procedure for IS method of Concrete Mix Design.	C07	L5
6	Design the concrete mix for grade M20 with suitable conditions. Find the	CO7	L5
	quantities		
	of constituents of the mix for a bag of cement		
7	Design the concrete mix for grade M30 with suitable conditions. Find the		
	quantities		
8	Design the concrete mix for the following data: characteristic compressive		
0	strength		
	= 20MPa maximum size of aggregate = 20mm (angular). Degree of workability		
	CF, Degree of quality control = good and type of exposure = severe. Water		
	absorption by $\dot{C}A = 0.5\%$ and moisture content in $F\dot{A} = 2.0\%$. Assume any suitable		
	missing data.		
9	Design the concrete mix for the following data: characteristic compressive		
	strength		
	= 35MPa, maximum size of aggregate = 20mm (angular), Degree of workability		

Copyright ©2017. cAAS. All rights reserved.

		= 0.9 CF, Degree of quality control = good and type of exposure =severe. Water absorption by CA = 1% and moisture content in FA = 1.5%. Assume any suitable missing data.		
	е	Experiences	-	-
ſ	1		CO7	L2
ſ	2			
	3			
	4		CO8	L3
	5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs Code:		18CV44 Sem: IV Marks: 40 Time: 75 r	minute	S	
Cou	rse:	Concrete Technology			
-	-	Note: Answer any 1 questions from each module, each carry equal	Marks	со	Level
		marks.			
		Module-3			
1	а	Explain Maturing concept of concrete?	8	CO5	L2
	b	List and Explain the factors that affect the work ability of concrete?	15	CO5	L2
		OR			
2	а	Explain the factors influencing the strength of concrete?	15	CO6	L2
	b	Write note on 1) creep 2) Shrinkage of concrete.	15	CO6	L2
		Module-4			
1	а	Design the concrete mix for grade M30 with suitable conditions. Find the	15	C07	L5
		quantities			
		or constituents of the mix for a bag of cement.	45		
			15		
2	a	Design the concrete mix for the following data: characteristic compressive strength	07	C07	L5
		= 35MPa, maximum size of aggregate = 20mm (angular), Degree of			
		CF Degree of guality control = good and type of exposure =severe Water			
		absorption			
		by CA = 1% and moisture content in FA = 1.5%. Assume any suitable missing			
		data.			
			15		

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions									
Crs C	Crs Code: 18CV44 Sem: IV Marks: 10 Time: 90				90 - 120	minute	S			
Cours	se:	Concrete	e Technology							
Note:	Each	student t	to answer 2-3	assignment	s. Each assi	gnment carr	ies equal ma	ırk.		
SNo	l	JSN		Assig	nment Desc	ription		Marks	СО	Level
1			How fly ash	concrete	gain streng	th in later	age? Explai	n 10	CO7,	L3
			Mechanism.							
2			Discuss the (effects of ac	dding fly asł	n, silica fume	e and groun	d 10	CO7,	L3
			granulated b	last furnace						
			slag in concr	ete.						
3			Explain in de	etail the cor	mposition, p	hysical prop	perties of th	e 10	CO7,	L3
			mineral admi	xture						
			GGBS and dis	scuss the be	enefits of usi	ng it in conc	rete.			
4			Discuss at le	ength the co	omposition,	properties c	of the minera	al 10	CO7,	L3

	admixture Fly Ash and			
	write the benefits of using it in concrete.			
5	What is meant by proportioning of concrete?	10	CO7,	L3
6	Write the Factors Influencing Consistency.	10	CO7,	L3
7	What are the Factors affecting Strength of Hardened concrete?	10	C07,	L3
8	What are the principal properties of "good" concrete?	10	CO7,	L3
9	What are the factors influencing the selection of materials?	10	CO7,	L3
10	Explain the method of finding flexural and split tensile strength of concrete.	10	CO7,	L3
11	Define Nominal Mixes	10	CO8	L3
12	Define Standard mixes	10	CO8	L5
13	What is Designed Mixes?	10	CO8	L5
14	What are the Factors affecting the choice of mix proportions?	10	CO8	L5
15	Explain the Design Procedure for IS method of Concrete Mix Design.	10	CO8	L5
16	Design the concrete mix for grade M20 with suitable conditions. Find the quantities of constituents of the mix for a bag of cement	10	CO8	L5
17	Design the concrete mix for grade M30 with suitable conditions. Find the quantities of constituents of the mix for a bag of cement.	10	CO8	L5
18	Design the concrete mix for the following data: characteristic compressive strength = 20MPa, maximum size of aggregate = 20mm (angular), Degree of workability = 0.9 CF, Degree of quality control = good and type of exposure = severe. Water absorption by CA = 0.5% and moisture content in FA = 2.0%.Assume any suitable missing data.	10	CO8	L5
19	Design the concrete mix for the following data: characteristic compressive strength = 35MPa, maximum size of aggregate = 20mm (angular), Degree of workability = 0.9 CF, Degree of quality control = good and type of exposure =severe. Water absorption by CA = 1% and moisture content in FA = 1.5%. Assume any suitable missing data.	10	CO8	L5

D3. TEACHING PLAN - 3

Module – 5

Title:	Special concrete	Appr	08 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	recommend special concretes depending on their specific applications and special processes and technology for particular types of structure	CO8	L5
b	Course Schedule		

Class No	Module Content Covered	CO	Level		
1	RMC- manufacture .	CO8	L5		
2	requirement as per QCI-RMCPCS	CO8	L5		
3	properties.	CO8	L5		
4	4 advantages and disadvantages.				
5	Self-Compacting concrete- concept, materials, tests, properties	CO8	L5		
6	6 application and typical mix Fiber reinforced concrete – Fibers types, properties,				
7	application of FRC.	CO8	L5		
8	Light weight concrete	CO8	L5		
9	material properties and types.	CO8	L5		
10	10Typical light weight concrete mix and applications.C				
С	Application Areas	CO	Level		
1	Used for application of marine structures, and valuable structures.	CO9	L5		
4	Paviaw Quastians				
1	Explain in detail about the statistical quality control and acceptance criteria of	-	-		
-	concrete.		L0		
2	What are the various types of chemical attacks encountered by concrete?	CO8	L5		
	What precautions can be taken to ensure good quality concrete in coastal				
	structures?				
3	Give the factors affecting the measurement of Ultrasonic pulse velocity test?	CO8	L5		
4	Define Aerated Concrete	CO8	L5		
5	What is the general use of Shotcrete?	CO8	L5		
6	What are the various methods of underwater construction? Explain.	CO8	L5		
7	What are the effects of cold weather concreting and hot weather concreting?	CO8	L5		
8	How can high-strength concrete be classified? Explain.	CO8	L5		
9	List the differences between polymer – impregnated concrete, polymer – modified concrete, and polymer concrete.	CO8	L2		
10	What are the various quality control tests done to ensure good performance of polymer concrete?	CO8	L2		
11	What are the basic properties of fibre – reinforced concrete which can be	CO8	L2		
	advantageously made use of in the design of structural elements?				
12	In what way can the behaviour of FRC can be used for seismic – resistant design?	CO8	L2		
13	Explain in detail the method of design of light weight concreting.	CO8	L2		
14	Describe the procedure of mass concrete	CO8	L2		
15	Describe the procedure of Grouting.	CO8	L2		
16	Explain the properties of polymer Impregnated Concrete.	CO8	L2		
17	What are the advantages of using ready mixed concrete instead of site mixed	CO8	L2		
	concrete?				
е	Experiences	-	-		
1		CO9	L2		
2					
3					
4		CO10	L2		
5					

E3. CIA EXAM – 3

a. Model Question Paper - 3

С	rs (Code:	18CV44	Sem:	IV	Marks:	15	Time:	75	minute	S	
С	our	se:	Concrete ⁻	Technolog	дУ							
	-	-	Note: Ans	swer any	1 questions	from each	module,	each carry	equal	Marks	CO	Level
			marks.									
			Module-5									

1	a	Explain the materials used for self compacting concrete	8	CO8	L3
	b	State the advantages and dis advantages of RMC	8	CO8	L3
2	a	Explain the fiber types used in Fiber Reinforced Concrete?	8	CO8	L3
	b	State the advantages of Light Weight Concrete?	8	CO8	L3
		OR			
3	a	Design the concrete mix for grade M20 with suitable conditions. Find the	16		L6
		quantities of constituents of the mix for a bag of cement			
4	a	Design the concrete mix for grade M30 with suitable conditions. Find the	16		L6
		quantities of constituents of the mix for a bag of cement.			

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions													
Crs C	Crs Code: 18CV44 Sem: IV Marks: 10 Time:)0 – 120 minutes				
Cours	Course: Concrete Technology												
Note:	Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.												
SNo		USN		A	Assignment De	escription		Marks	СО	Level			
1	1 Explain in detail about the statistical quality control and									L5			
2			What are	the variou	s types of cher	nical attac	ks encountered	10	CO8	15			
		10	000										
3			Give the pulse vel	factors affe ocitv test?	10	CO8	L5						
4			Define A	erated Con	crete			10	CO8	L5			
5			What is t	he general	use of Shotcre	ete?		10	CO8	L5			
6	What are the various methods of underwater construction?							n? 10	CO8	L5			
7	What are the effects of cold weather concreting and ho weather concreting?						ot 10	CO8	L5				
8	How can high-strength concrete be classified? Explain.						10	CO8	L5				
9	List the differences betwee					ner – impr polymer c	e, 10	CO8	L2				
10			What are performa	the various	od 10	CO8	L2						
11			What are which ca advantag elements	the basic p n be geously ma s?	10	CO8	L2						
12			In what w – resistar	vay can the nt design?	C 10	CO8	L2						
13			Explain ir concretir	n detail the 1g.	10	CO8	L2						
14			Describe	the proced	dure of mass co	oncrete		10	CO8	L2			
15			Describe	the proced	dure of Groutin	g.		10	CO8	L2			
16			Explain tl	ne properti	es of polymer I	- Impregnat	ed Concrete.	10	CO8	L2			
17			What are instead c concrete	the advan f site mixed ?	10	CO8	L2						

F. EXAM PREPARATION

1. University Model Question Paper

Course:		Concrete Technology	∕ Year	May /2019					
Crs Code:		18CV44 Sem: IV Marks: 100 Time:						180 minutes	
- Note		Answer all FIVE full questic	ons. All que	estions carry equ	ual marks.		Marks	СО	Level
1	a.	Write the chemical comp	osition of o	cement. Write tł	ne flow chart	for dry	8	CO1	L2
	b	Explain the importance	8	CO1	L3				
2	a	Explain the role of admixtu	re in concr	rete technology			8	CO2	L3
	b	Name any 4 types of ceme	ent name ti	he properties ar	nd application	ns of any	8	CO2	L3
		two types of cement							
			Modu	ule-2					
3	a	Define workabality ? Explai	n factor inf	fluencing worka	bality of cond	crete	8	CO3	L3
	b	Write a note on Segregatic	n and blee	eding.			8	CO3	L3
	2	Why curing is pooled to g	ancrotos21	Evolain curing n	nothods?		Q	CO4	12
4	a h	Why compaction is require	d to conci	rete? Explain co	mpaction ma	athod by	8	CO4	
		vibrerations?			mpaction m			004	
5	а	Explaiin the factors influen	cing streng	gth of concrete?			8	CO5	L3
	b	Write a note on creep, shri	nkage of c	oncrete?			8	CO5	L3
6	a	Explain maturity concept c	f concrete	?			8	CO6	L2
	b	Design the concrete mix fo	or grade M	130 with suitable	e conditions.	Find the	8	CO6	L3
		quantities of constituents of	of the mix f	or a bag of cem	ent.				
			Modu						
7	а	Design the concrete r	nix for t	he following	data chara	acteristic	16	C07	16
'	ŭ	compressive strength		ine rettering	data. onare		10	007	
		= 20MPa, maximum size of	aggregate	e = 20mm (angul	ar), Degree o	f			
		workability = 0.9							
		CF, Degree of quality contr	ol = good a	and type of expo	osure = severe	e. Water			
		absorption by CA = 0.5% an	d moisture	e content in FA =	2.0%.Assume	e any			
		missing data							
8	а	Design the concrete r	nix for t	he following	data: chara	acteristic	16	CO7	L6
		compressive strength		0					
		= 35MPa, maximum size of	aggregate	e = 20mm (angul	ar), Degree o	f			
		workability = 0.9							
		CF, Degree of quality contr	ol = good a	and type of expo	osure =severe	e. Water			
		absorption $b_{1} \in A_{2}$ and moisture of	ntont in El	$\Lambda = 1 E^{\circ}$ Assume	any cuitable	missing			
	data								
	Module-5								
9	а	Explain the materials used	for self co	mpacting concr	ete?		8	CO8	L3
	b	State the advantages and o	disadvanta	ges of RMC?			8	CO8	L3
10	a	Explain the Fiber types use	ed in the fib	per reinforced co	oncrete?		8	C08	L3
	b	State th the advantages of	light weigł	nt concrete?			8	CO8	L3

2. SEE Important Questions

Course:		Concrete Technology Month /							/ Year MAY/2020				
Crs Code:		18cv44	Sem:	IV	Marks:	100	Time:		180 mi	inutes			
Note		Answer all FIV	'E full quest	tions. All que	estions carry e	qual marks.		-	-				
Mod	Qno.							Marks	CO	Year			
ule													
1	a.	Write the ch	8	CO1	L2								
	b	Explain the	8	CO1	L3								
		·											
2	а	Explain the rol	le of admixt	ure in conci	rete technolog	ay .		8	CO2	L3			
	b	Name any 4 ty	/pes of cerr	nent name t	he properties a	and application	s of any	8	CO2	L3			
		two types of c	ement										
				Mod	ule-2								
3	а	Define workab	ality ? Expl	ain factor in	fluencing work	kabality of conc	rete	8	CO3	L3			
	b	Write a note o	n Segregat	ion and blee	eding.	,		8	CO3	L3			
					<u> </u>								
4	а	Why curing is	needed to	concrete>?	Explain curing	methods?		8	CO4	L3			
	b	Why compact	ion is requi	red to conc	rete? Explain o	compaction ma	thod by	8	CO4	L3			
		vibrerations?											
		Module-3											
5	a	Explain the fa	ctors influe	ncing streng	gth of concrete	95		8	CO5	L3			
	b	Write a note on creep, shrinkage of concrete?							CO5	L3			
6	2	Evolain maturi	ity concept	of opporato	2			0	<u> </u>				
0	a h	Explain malun	noroto miv	for grade M	r 120 with cuitab	la conditions [ind the	8	C06				
	D	quantities of constituents of the mix for a bag of coment								L3			
		quantities of C											
				Mod	ule-4								
7	а	Design the co	ncrete mix [·]	for the follow	wing data: cha	racteristic com	oressive	16	CO7	16			
'	2	strength			unig adai ona		0.000110	10	007				
		= 20MPa, maxi	imum size c	of aggregate	e = 20mm (ang	ular), Degree of							
		workability = 0	.9		-	-							
		CF, Degree of	quality con	trol = good a	and type of exp	posure = severe	. Water						
		absorption by	CA = 0.5% a	and moisture	e content in FA	. = 2.0%.Assume	any						
		suitable											
		missing data.											
0	2	Docian the co	noroto miv	for the fello	vina data: cha	ractoristic com	aracciva	16	CO7	16			
0	a	strenath			willig data. Cha		JIESSIVE	10	00/				
		= 35MPa, maxi	mum size c	of aggregate	e = 20mm (angi	ular). Degree of							
		workability = 0	1.9	agg.ogate	201111 (0.1.9)	ala.,, 2 og. oo ol							
		CF, Degree of	quality con	trol = good a	and type of exp	posure =severe.	Water						
		absorption		-		-							
		by CA = 1% and	d moisture (content in F	A = 1.5%. Assun	ne any suitable	missing						
		data.											
				Mod	ule-5				000	<u> </u>			
9	a	Explain the ma	aterials use	a tor selt co	mpacting con	crete?		8	CO8	L3			
1	D I	ISLALE LNE ADVA	intages and	i disadvanta	ages of RMC?			I Q		⊢ L3			

Course Outcome Computation

Academic Year:																
Odd / Even semester																
INTERNAL TEST		Tı				T2					Тз					
Course Outcome	CO1		CO2		CO3		CO4		CO5		CO6		C07		CO8	
QUESTION NO	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV
MAX MARKS																
USN-1																
USN-2																
USN-3																
USN-4																
USN-5																
USN-6																
Average CO Attainment	D															

LV Threshold : 3:>60%, 2:>=50% and <=60%, 1: <=49% CO1 Computation :(2+2+2+3)/4 = 10/4=2.5

PO Computation

Program Outcome Weight of CO - PO	PO1	PO3	PO3	PO1	PO12	PO12	PO6	PO1
Course Outcome	CO1	CO2	CO3	CO4	CO5	CO6	CO7	CO8
Test/Quiz/Lab		T1			T2		Т	3
QUESTION NO	Q1	L Q2 LV V	Q3 LV	Q1 LV	Q2 LV	Q3 LV	Q1 LV	Q2 LV
MAX MARKS								
USN-1								
USN-2								
USN-3								
USN-4								
USN-5 USN-6								
Average CO Attainment								